Disaster-related accessibility to essential services: Testing location assumptions of food and shelter locations

Kari Moy, University of Maryland Baltimore County

Kerstin Schreiber, PhD, University of Maryland Baltimore County

Ashlea Bennett Milburn, PhD, University of Arkansas

Charleen McNeill, PhD, RN University of Tennessee Health Science Center

Lauren Clay, PhD, MPH - University of Maryland Baltimore County

AMERICAN ASSOCIATION OF GEOGRAPHERS ANNUAL MEETING | 17 APRIL 2024

Emergency response plans include shelters and emergency food

- Shelter and food are among FEMA's community lifelines
- Some impacted persons rely on public shelters and emergency feeding
- American Red Cross (ARC) provided over 1M stays in 1 year period
- <u>Where</u> to locate essential services?

Shelter location models oversimplify behavior

Evacuating households make series of choices, including:

- accommodation type: family, friends, hotel, public shelter
- destination choice: physical location of selected accommodation

Existing models use **nearest-shelter** behavior assumption to locate shelters and assign people

- destination assignment rather than choice
- ignores factors other than proximity to guide destination choice

Literature calls for shelter location models to make more realistic assumptions

This research tests nearest-shelter assumptions

Focus on public shelters in local area

- Three shelter configurations
- Actual historical response
- <u>p-Center</u> model minimizes maximum household distance to nearest shelter
- <u>p-Median</u> model minimizes average household distance to nearest shelter

For alternative configuration, examine:

- Household distance to 1stnearest shelter
- Incremental household distance to 2nd-nearest shelter
- Implications of nearestshelter behavior on demand balance
- Nearest-shelter projections compared with actual overnight client counts

Does evidence support the nearestshelter assumption?

Case Study Hurricane Florence North Carolina

- Selected cities: Fayetteville, Greenville, Wilmington
- Date range: Sep. 13-16, 2018
- Data:
 - Candidate shelter locations, ARC National Shelter System (NSS)
 - Open shelters, ARC NSS
 - Overnight client counts, ARC NSS
 - Census block group (CBG) population, American FactFinder
 - CBG geography, TIGER/Line dataset
 - Road distances, Google Maps API

Legend

- **Fayetteville Shelters**
- Greenville Shelters
- Wilmington Shelters
- **US** Counties
- Census block groups
- Census Block Group Centroid
- Fayetteville Population
- 25.00 100.00 100.01 - 200.00 200.01 - 300.00 300.01 - 400.00 **Greenville Population** 22.00 - 100.00
 - 100.01 200.00
 - 200.01 300.00
- 300.01 400.00

Wilmington Population

18.00 - 100.00 100.01 - 200.00 200.01 - 300.00

Case study shelter configurations

Household distances to nearest open shelter vary

- Range from 0.25 to 13 mi.
- Gray boxes show middle 50% of households
 - Fayetteville 2 to 5 mi.
 - Greenville 2 to 6 mi.
 - Wilmington 1.5 to 4 mi.
- Greenville has longest distances and more variation
- Models improve these metrics, over actual response

Many see low cost of choosing 2nd-nearest shelter

- Incremental distance from 1st- to 2ndnearest shelter:
 - <= ¼ mi. for 3%-8% households
 - <= 1 mi. for 16%-36%
- Many more see low costs in Fayetteville Actual Response
 - <= ¼ mi. for 24%
 - <= 1 mi. for 46%
- Implies some households considering other factors do not "pay much" in proximity to choose farther shelters

■ Fay ActResp ■ Fay pCen ■ Fay pMed ■ Gre ActResp ■ Gre pCen ■ Gre pMed ■ Wil ActResp ■ Wil pCen ■ Wil pMed

Food Access

Goals

- 1. To understand how people access food sources during hurricanes
- 2. To describe how food access and availability are disrupted during hurricanes
- 3. To identify neighborhoods and populations most at risk for disruption to food security during hurricanes

Case Study Hurricane Florence (2018) NC

Data sources

- Retail food stores: ReferenceUSA database
- Food Pantries: United Way of NC data, shared with research team
- Farmers Market: USDA

Distance from Block to Nearest Pantry

- ¹/₃ of blocks travel under 2 miles to reach nearest pantry
- An additional ¼ of blocks travel under 4 miles to reach nearest pantry
- Around ⅓ of blocks travel more than 10 miles to reach nearest pantry

Incremental Distance from Block to 2nd Nearest Pantry

- Almost ½ of blocks travel less than 1 mile farther than nearest pantry to reach second nearest pantry
- Almost ³/₃ of blocks travel less than 2 miles farther than nearest pantry to reach second nearest pantry
- Only 1 block travels more than 8 miles farther (8.6 miles) to reach second nearest pantry

Next Steps...

- 1. Distance to nearest grocery, convenience, dollar store, farmers market
- 2. How does power loss change travel time to nearest food source?
- 3. Which population (location, characteristics) are most impacted by disruption to food availability?

Partnership with USDA to also examine:

- 4. Which food sources are people accessing during the preparedness, response, and recovery phases?
- 5. What types of foods are people buying during the preparedness, response, and recovery phases?

CONTACT: lclay@umbc.edu